Adding the APM Insight Python agent in Kubernetes via init containers
Adding the APM Insight Python agent via init containers in Kubernetes enables the seamless integration of performance monitoring for Python applications, ensuring efficient tracking and analysis of application behavior within the Kubernetes environment.
Please follow the steps below to achieve this:
- Create a secret for the Site24x7 license key in your application namespace.
NoteYou can obtain the license key from your Site24x7 account by navigating to Admin > Developer > Device Key.
Example:
kubectl create secret generic app-secret --from-literal=s247licensekey='your_s247_license_key' -n pythonapp
- Create an empty volume that will be used to copy the agent files during the init containers process.
Example:
volumes:
- name: s247agent - Include the following init containers command in your Helm chart or deployment YAML file.
initContainers:
- name: agent-copy
image: site24x7/apminsight-pythonagent:latest
imagePullPolicy: IfNotPresent
command: ['cp', '-r', '/opt/site24x7/.', '/home/apm']
volumeMounts:
- name: s247agent
mountPath: /home/apm - Mount the volume created in step 2 into your application container.
Example:
containers:
- name: pythonapp
image: pythonapp:latest
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8080
volumeMounts:
- name: s247agent
mountPath: /home/apm - Add the following environment variables to the application container.
- Environment variable 1
Name: S247_LICENSE_KEY
Value: Enter the s247licensekey from the secret added in step 1. - Environment variable 2
Name: APP_RUN_COMMAND
Value: Provide your application startup command. - Environment variable 3
Name: APM_APP_NAME
Value: Configure the name of the Python application that will be displayed in the Site24x7 client. - Environment variable 4
Name: APP_ENV_PATH
Value: If you are using a virtual environment, specify the path of the environment bin directory.
NoteIn this step, we configure the application (Python process) startup command as an argument so that the agent will send data to the specified monitor name.
Example:
Here is an example of a Python application running in a Gunicorn environment on port 8080 with two worker processes.
env:
- name: APP_RUN_COMMAND
value: gunicorn --bind 127.0.0.1:8080 -w 2 pythonapp_main:app
- name: S247_LICENSE_KEY
valueFrom:
secretKeyRef:
name: pythonapp-secrets
key: s247_license_key - Environment variable 1
- Change your application container startup command to the Python agent startup script.
NoteThe script agent_start.sh will start your Python application with the APM Python agent using the command provided in APP_RUN_COMMAND.
containers:
- name: pythonapp
image: pythonapp:latest
imagePullPolicy: IfNotPresent
command: ["/bin/sh", "-c", "/home/apm/agent_start.sh"]
ports:
- containerPort: 8080
volumeMounts:
- name: s247agent
mountPath: /home/apm
Sample Kubernetes deployment YAML file
apiVersion: v1 kind: Namespace metadata: name: pythonapp --- apiVersion: v1 kind: Secret type: Opaque metadata: name: pythonapp-secrets data: s247licensekey: dXNCGfNGPfNTMyZjVjNzAwOTE5YTM4ODQyMDQzOGVjZjAwNGE4NA== --- apiVersion: apps/v1 kind: Deployment metadata: name: pythonapp-deployment namespace: pythonapp labels: app: flask spec: selector: matchLabels: name: pythonapp-deployment replicas: 1 template: metadata: labels: name: pythonapp-deployment spec: containers: - name: pythonapp-deployment image: pythonapp:version1 command: ["/bin/sh", "-c", "/home/apm/agent_start.sh"] imagePullPolicy: Always ports: - containerPort: 5000 env: - name: APP_RUN_COMMAND value: "gunicorn --bind 127.0.0.1:8080 -w 2 pythonapp_main:app" - name: APM_APP_NAME value: "Python-application" - name: S247_LICENSE_KEY valueFrom: secretKeyRef: name: pythonapp-secret key: s247licensekey volumeMounts: - mountPath: /home/apm name: s247agent initContainers: - name: agent-copy-init command: ["cp","-r","/opt/site24x7/.","/home/apm"] image: site2x7/apminsight-pythonagent:latest imagePullPolicy: Always volumeMounts: - mountPath: /home/apm name: s247agent volumes: - name: s247agent # emptyDir: {} restartPolicy: Always --- apiVersion: v1 kind: Service metadata: name: pythonapp-deployment spec: type: NodePort selector: app: flask ports: - protocol: TCP port: 5000 targetPort: 5000 nodePort: 30200
Related articles
How to install various APM Insight agents in a Docker container
Java | .NET | PHP | Node.js | Python
How to install various APM Insight agents in a Kubernetes environment
Java | .NET | PHP | Node.js
-
On this page
- Related articles